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We study the effect of the time-dependent fluctuations of the order parameter in supercon-
ducting samples in which the dimensions are smaller than the coherence length, We find that
within the mean field theory, the static properties (specific heat, spin susceptibility), as well
as the transport properties, nuclear-spin relaxation time, and the tunneling density of states,
diverge as T approaches T,. Therefore, the fluctuation corrections are much more important
in those “zero-dimensional”’ superconductors than in the one-, two-, and three-dimensional

ones.
of the samples decreases.
aration can be solved.

I. INTRODUCTION

It is well known that the effect of the fluctuations
of the order parameter can be enhanced by reducing
the size of a superconducting sample. ™% Although
fluctuation effects have been recently detected on
bulk samples, they were first observed in thin
films.'=% A thin film can be viewed as a two-dimen-
sional sample with respect to the spatial variations
of the order parameter @,

In this work, we will systematically study the
effects of fluctuations in zero-dimensional samples.
Such samples are obtained when one considers an
aggregate of small grains, the average radius R of
which is smaller than the coherence length §. We
call such samples zero-dimensional samples be-
cause the spatial variations of the order parameter
require too much energy to be thermally excited.
Let us point out that we do not consider here so-
called granular samples which are obtained by
special evaporation procedures. We assume in the
following that the thickness of insulating material
between adjacent grains is large enough for the
grains to be perfectly insulated electrically. Typ-
ically, for aluminium grains, a zero-dimensional
sample is obtained with grain sizes smaller than
1000 A. Since we do not take into account here the
possible modifications of the electronic structure
in the normal state due to the size effect, the diam-
eter of the grains should exceed a few tens of A.

Consequently, these systems are of particular
interest in two respects: first, only the time-
dependent fluctuations of the order parameter need
to be considered and second, we expect large fluc-
tuation effects. In particular, we expect a large
width (i.e., experimentally accessible) of the crit-
ical region, i.e., the region around the critical
temperature where the mean field theory is no

|

In particular, the width of the critical region is very large and increases when the size
These effects should be observable if the problems of sample prep-

longer valid. &7

On the other hand, the preparation of such sam-
ples and a precise size control might be experimen-
tally difficult. We repeat that the sizes we are in-
terested in are smaller than 1000 A. Nevertheless,
we shall present here our theoretical investigations,
with the hope that these difficulties will be circum-
vented in the near future.

Although we have stated that the deviations from
the mean field theory will be remarkable in small
grains, we calculate various thermodynamical as
well as dynamical properties by making use of the
mean field approach. Thus, in Sec. II we shall be
interested in the thermodynamical properties in
the classical region, such as the specific heat and
the diamagnetic susceptibility. In Sec. III we shall
study some dynamical response functions such as
the density of states and the nuclear spin relaxation
time. We defer the discussion of the possible de-
viation from the mean field theory to Sec. IV.

II. THERMODYNAMICAL PROPERTIES

As our introduction to the general problem of the
fluctuations in zero-dimensional systems, we start
by considering the thermodynamical properties
associated with the time-dependant fluctuations of
the order parameter. As we have already shown, ®
one can discuss the equilibrium properties in terms
of the Ginzburg-Landau functional of the order par-
rameter. In the zero-dimensional case, the Ginz-
burg-Landau free-energy functional to be used will
be the time-dependent Ginzburg-Landau functional,®
since, for our purpose, the spatial fluctuations of
the order parameter can be considered as being
“locked.” Thus, the free energy F associated with
the fluctuations can be written as

F(T,H)=-TInZ, (1)
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In (1), Z is the partition function and H is an
applied magnetic field. In (2), € is the volume of
the grain (2=% 7R®) and & (+) is the fluctuation field
with an “imaginary” time (0<r<8=7"1).2 Formula
(2) means that the partition function, in the present
case, is obtained by a summation over all the pos-
sible time-dependent variations of the order param-
eter, each variation being associated with a value
of the time-dependent Ginzburg-Landau energy
functional. This functional, in the presence of H,
is given by

£[8(r)] =N(o)q>*(f)[1n FTE

O RO LONC

In (3), N(0) is the electron density at the Fermi
level, T, is the transition temperature of the bulk
system, w is the operator d/dr, ¥(z) is the digamma
function, and a (H) is the pair-breaking energy. In
the absence of any magnetic impurity inside the
grains, we will write o (H) as a sum of two terms

a(H) = ay+a,(H). 4)

a, (H) is the usual contribution to the pair-breaking
energy due to the applied magnetic field. We have

o) =208, 5)

where D is the electronic diffusion constant (limited
by the mean free path or the size of the sample, for
sufficiently small specimens) and Z\z) is the value
of the square of the vector potential averaged over
the sample. For a spherical grain of radius R,

we have

2
o) =2 25 R, ®)

@, is the contribution to a(H) due to the proximity
effect. ¥ Indeed, the order parameter is not
strictly constant in the specimen but is slightly
lowered in the vicinity of the surface. The prox-
imity of the dielectric imposes boundary conditions
on the order parameter resulting in the lowering
of the transition temperature. The value of q is,
in turn, of the order of the shift in the critical
temperature. Consequently, we will assume

aoz%f?— ()
0
for a spherical grain of radius R, p, being the Fer-
mi momentum of the material considered.

Note that, in (3), we have completely neglected
the nonlinear term of the Ginzburg-Landau func-
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tional. This amounts to treating the fluctuation
effects within the mean field approximation.
Now, we introduce the Fourier decomposition

¥(1)= 2 et“nTd,, w,=2mnT (8)
N==co
with the usual Matsubara boundary conditions. The
evaluation of Z is then straightforward. Indeed
* QN0
Z=_[ d@nexp(——q—}—lz | @, zK,,)
o n
® 7T
”g(N(o)nK,, ’ ©)
K, being such that
T (1 |o +oz(H)) \
= = n (%) .
Ky=ln +z,)(2+ e W) . (o)

Thus, from (1) and (7), the free energy is such that
F(T,H)=T2 InkK,+C. 11)
n=0

As we are close to the transition temperature, it
is sufficient, for our subsequent investigations to
retain only the #=0 term in the summation (11),
so that

F(T, H)~TInk,
T 1 I 1
o~ Tln[ln Tco+d)(§+z1(£{)>- d)(g)]

T
Tc)—Tlnn,

~TIln (1n (12)

with
T AT
e

for
T~T,,

where T, is defined by

T, (L, a0
1n;j+zp(2+4m)-zp<z)~o

and AT by

(13)

(14)

Of course T, is the transition temperature of the
grain in the applied magnetic field H in the absence
of any fluctuation effect.

The expressions of the thermodynamical quanti-
ties such as the specific heat and the diamagnetic
susceptibility come out easily.

AT=T-T,.

A. Specific Heat
The specific heat per grain c(T) is given by

1 1

o%F
o= =1 50" @/ToF 7 t9)
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Thus in the classical region, the specific heat will
exhibit a [T,/(T - T,)]? divergence. Note that for the
experimental system in which the grains are im-
bedded in a dielectric, the total value C,(T) of the
specific heat per unit volume will be

Ct(T) =N/772 ’

where N is the number of spheres per unit volume.

(16)

B. Magnetization M

For M, we have

8F 1 aT
M=~ oR ~ W/Ty on (w0
__oH)
T 2mH
v {5 +[a(H)/47T,] } 11
X{ 1-Ta@)/4r7 0 +le@/4 T ] |72
(18)

where 'V (z) is the trigamma function.
Consequently we have for the diamagnetic suscep-
tibility per spherical grain

X(Ty H) = ‘%f%gi
D {3+ a(H)/4TT, } 1
x [1 ~Ta@)/arT Jv™ +[01(H)/477Tc]}] n

(19)

Thus in the classical region, the diamagnetic
susceptibility will exhibit a [7,/(T - T,)] divergence.
We can also rewrite Eq. (19) as

x (T, H)=% (¢%/c®) R® £¥(T,H) T,

(20)

provided that £(7T, H) is defined by

D
60 D)= | )

V(L +[a(@)/4rT ]} e
1-[a(@)/4nT Jy {%+[a<H)/4ch]}] )

(21)

It is easily checked that, in the limit a(H)/47T,~0,
£(T, H) reduces to the ordinary coherence length.

III. DYNAMICAL PROPERTIES

We will consider essentially three quantities that
might be accessible to experiment: first, the tun-
neling density of states (this quanitity could be mea-
sured through the method developed by Zeller and
Giaeverlz); second, the electromagnetic response
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for finite frequencies; third, and perhaps the most
directly accessible, the nuclear spin relaxation time.

Before studying each of these quantities, we shall
first outline how the method of calculation of the dy-
namical properties is different from the previous
ones. Indeed it has been shown in (7) that, as far
as thermodynamical properties were concerned, the
diagrammatic-perturbational method was equivalent
to the functional-integral method where the Ginz-
burg-Landau functional is used as the effective
Lagrangian. However, we have not been able to
prove so far that a similar equivalence holds for
dynamical properties. Moreover, it seems that
this is not true in the case of the electric conduc-
tivity in a two-dimensional system for example.
The analysis by Schmidt'® using the time-dependent
Ginzburg-Landau equation (TDGL) only takes care
of the Aslamazov-Larkin term. However, from
the microscopic calculation there is another term
as important as this one. In most experiments
done in the two-dimensional systems, on the other
hand, this additional term is of little importance,
possibly because its logarithmic divergence can
be suppressed!* by the introduction of a pair-break-
ing parameter at the surface of the film.®

However, in the zero-dimensional system, there
is no contribution due to the so-called Aslamazov-
Larkin term, since the order parameter cannot
carry the electric current. On the other hand, the
other term often referred to as Maki’s is the only
diverging one even in the presence of the pair-
breaking interaction.

Consequently, for present purposes, we shall
perform our calculations using the standard per-
turbation procedure.!*1#16:17 We represent on Figs.
1 and 2 the diagrams which have to be considered
for the evaluation of the density of states and of the
electromagnetic response respectively. Calcula-
tions of the density of states have beendone in Refs.
7 and 17 and we can adapt them straightforwardly
to our case. For the calculation of the electromag-
netic response it is easily seen, from the Aslama-
zov-Larkin expression'® that diagrams 6 and €
yield a zero contribution when the order parameter
has no spatial variation. Thus the only contribu-
tion to the electromagnetic response comes from
diagrams @, B, and ¥y of Fig. 2, since diagrams &
and € are negligible in front of @, B8, and y. Simi-

FIG. 1. Diagram giv-
ing rise to the lowest-
order correction to the
density of states.
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FIG. 2. Lowest-order diagrams contributing to the
electromagnetic response function.

(>4

larly, for the calculation of the nuclear-spin relax-
ation time T';, it will be also sufficient to consider
diagrams @, B, and Y. In the present case dia-
grams 0 and € vanish identically owing to the spin
conservation. Thus it turns out that the calcula-
tions of Refs. 18 and 19 can be used in this partic-
ular problem.

A. Tunneling Density of States

The calculations are the same as in Refs. 7 and
17. K w is the energy to the Fermi level, we con-
sider v(w),

v(w)=N(w)/N,(w) -1, (22)
where N(w) is the actual density of states and N,(w)
is the density of states in the normal situation

where the effect of fluctuations has been ignored.
We have for v(w),

4T 1
vw) = Forem Re( [2iw + (8T/m)n P > ' .

Expression (23) is obtained for a particle of
volume € in the absence of any applied magnetic
field. I a magnetic field is applied, it is sufficient
to change T in Eq. (23) to T, as defined by (13),
to obtain the corresponding density of states.

The problem is now to measure such a quantity.
The experiment we think of is the experiment by
Zeller and Giaever.'? In this experiment, the
metallic grains are imbedded in the oxide of the
tunneling barrier. The tunneling takes place pref-
erentially thvough the grains. If the grains had the
same volume 2, the barrier was symmetrical, and
the grains were sufficiently large so that quantum
charge effects (yielding giant zero-bias anomalies)
could be avoided, then the conductance G(eV) of
the function could be written as

al C<1 4T

G(eV)=;(e—V") = - W/—_ﬁ,)
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1
2ieV+(8T/TT)1n(T/7L)]2> » (29

XRe[

where C is a constant and V is the applied voltage
at the insulating barrier. In order to give a pre-
cise account of the effects of the fluctuations in an
actual experimental situation, the theory should
consider the quantum charge effects,'® the asym-
metry of the barrier, and the fact that the grains
do not feel the same potential. We will not go into
these details but we will only point out that our ex-
pression (24) might be relevant to an experiment of
the Zeller-Giaever type.

B. Complex Conductivity

The electromagnetic response, i.e., the current
j(¥, w) induced by a time varying potential vector
A(F, w), is given by the relation (18),

T F 0= @ ~iwAF,w . (25)

The quantity @(-iw) is yielded considering dia-
grams a, B, y of Fig. 2. As already explained in
the zero-dimensional superconductor, diagrams &
and € do not contribute to @(-iw), since the order
parameter cannot have any spatial dependence or
cannot carry any current, As pointed out in Ref.

20, an analogy can be drawn between the present
case and the gapless regime.!! This follows from
the fact that each of diagrams @, B, ¥ contains a
single fluctuation propagator. Since there is no pos-
sibility of confluence of two poles in the two propa-
gators, we can evaluate the contribution from the
fluctuation propagator in these diagrams by only
taking the component with w,=0. In the notations
used in Ref. 11, the gapless expressions depend es-
sentially on A% and o. A% is the square of the order
parameter and o the pair-breaking parameter. The
expression for @ in the present case can be deduced
from the gapless expression if we make the substi-
tutions (26) and (27),

A% (T/9)D(w,=0), (26)
a-aH) . (27

In (26), D(w,) is the correlation function for the
order parameter and w, the boson Matsubara fre-
quency. We have for D(w,),

1 T
f'D(w,,)=*zm [ln T

¥ ¢<%+—-L—-—"" i;;(m%w(-z‘-)]d. (28)

Consequently, using the result of (18) and (11) we
can write Q (- iw) as

9 (w,=0) (l iw )
0) ["’m 2"P~ oar

R(-iw)=o0, {iw
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(211T
N ELE S,
iw

x (w<;+p——ﬁ) zp(2+p)>]} ;o (29)

where p=a (H)/(277T) and o, is the conductivity of
the normal state.

Substituting Eq. (28) into (29), the conductivity
o(w) can be written in the low-frequency limit
(w/T,<<1) as

B T
o(w) =0, {1 + 27TN(0)Q ln(T/Tc)

21T
iw=-2a (H)>

P(z+p) * 4T zp“")(2 +p)>} .

(30)

wf—L1
<2a(H)

Such an anomalous behavior of the conductivity
could be detected through standard microwave ex-
periments. We note here that in opposition to the
case with higher dimensions we have a diamagnetic
term at all temperatures. This diamagnetic part
coincides exactly with what we obtained in Sec. I
using the Ginzburg-Landau functional in the presence
of a magnetic field H.

C. Nuclear Relaxation Time T,

Here too, the analogy can be drawn with the gap-
less regime. Thus we can write for the ratio T,/
Ty, (T4, being the value of T, in the normal state
and in the absence of fluctuation effects)

r 1
T_mL= [1+21rN(0)91n(T/TC) (Za(H) PP G +p)

-1
2l wen)] e

or

T, u 1 \*
Ty, <1+8N(0)Q a(H)77> (32)

As pointed out in Ref. 21, expression (32) pre-
dicts quite observable effects for grains smaller
than, or of the order of, 1000 A.

So far, we have performed our calculations using
the mean field approximation. We shall now inves-
tigate the validity of such an approximation.

IV. BREAKDOWN OF MEAN FIELD APPROXIMATION

In the above calculations we have estimated vari-
ous response functions assuming that, in the
Hamiltonian, the BCS interaction could be con-
sidered as a perturbation. The expansion in powers
of this interaction has led us to consider the order
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parameter correlation function D(w,). In zeroth-
order perturbation, D(w,) is yielded by the bare
bubble [diagram (a) of Fig. 3] II,(w,). A better ap-
proximation for D(w,) is provided by the mean field
theory, where, for the evaluation of D, we treat
the BCS interaction within the RPA. Thus we have
for D(w,)

Igl ?Iy(w,)
- gl yw,) ’

where g is the BCS coupling constant, T is the
time ordering operator, and ®'(t) is the operator,

') =1g1 2, a",.)a"_,. () . (34)

From (33), it is a readily seen that we obtain ex-
pression (28) for D(w,). The form (28) is also
yielded by the functional-integral method when one
uses the Ginzburg-Landau expression (3) as the
effective Lagrangian. When 7 - T,, D (w,=0) di-
verges as T,/(T -T,).

It is of interest to note here that the problem of
the fluctuations of the order parameter in a small
superconducting sample close to its critical tem-
perature is quite analogous to the problem of spin
fluctuations in dilute nearly magnetic alloys. The
diverging correlation function is then the localized
spin-spin correlation function when the impurity
is close to being magnetic.®

The general expression for D (w,) in the present
case can be written as

D(w,)=(T{&'O)2 O} ,,= (33)

lgl20(w,)

1-lgl(w,) ’ (35)

D (w,)=

where M(w,) is the full renormalized particle-parti-
cle or hole-hole bubble. Consequently, it will be
possible to use form (33) for D if the renormaliza-
tion effects” on II(w,) can be neglected. In order

to check this last point, we will consider again a
perturbation expansion of I(w,) in powers of the
BCS interaction. This calculation has been done

in Ref. 7 for the case of three-, two-, and one-
dimensional superconductors. Thus we shall con-
sider the diagrammatic expansion represented

on Fig. 3. On Fig. 3, the diagram (a) is the zeroth-
order approximation for II, i.e., Il,. The diagram
(b) is the first-order corrections to II, the diagram
(c) one of the second-order corrections.

" In the RPA, D(w,) can be written as (33) or (28),
or since we are close to T, as

O D ED

(b)

FIG. 3. Self-energy corrections to the order-parameter
correlation function (i.e., the fluctuation propagator).
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:D(wv)=.N(o>n+“'—“’L'> . (36)
87T,

Once the perturbation effects on IT(w,) are taken
into account, D(w,=0) can be written as

D(w,=0)=[N(O)]™" . (37)

The mean field theory will then be applicable as
long as [(n =7n)/n]< 1. We notice that the calcula-
tion of Ref. 7 can be adapted quite straightforwardly
to our case. As a result, we find that 7 can be ex-
panded as

2 3
- a, a a
-nl1+% —°—+O<——°—> ]
n n[ +nz +n4 )+ , (38)

where g is given by
ay="1¢(3)/87°QN(0)T, . (39)

Thus, the mean field approach is found to break
down when 1 =7,, where

- i (3) 1/2
e (BNZQN(O)TC) : (40)
Relation (40) (n=7,) defines the onset of the criti-

cal region and the calculations in Secs. II and III
are thus valid when 7 >7,. Noting that, from (39),

ay=£o/poR? (41)

the width of the transition region AT, is for alumin-
um typically

AT,=10?/R%% | (42)

with R in A. Thus if R~100 A, AT,~0.1°K, which
is quite a large value for a superconducting sample.

The problem arises now to evaluate the fluctua-
tion propagator that we have considered inside the
critical region. One could be tempted to handle the
renormalization problems by selecting certain
classes of diagrams. For example, one might
think of summing up “self-energy” diagrams such
as diagram (b) of Fig. 3. However, it has been
shown in Ref. 8 that such a renormalization pro-
cedure is not valid (this result has been obtained
for the problem of renormalization of the localized
spin fluctuation propagator but this is also true for
the present problem) because it ignored corrections
which were as or more important. More general-
ly, a series such as the series (38) seems difficult
to be summed up into a simple analytic expression.

On the other hand, it has been shown in (8) that
the renormalized fluctuation propagator D(w, =0)
could be expressed in a closed form through the
functional integral formalism. Indeed, we have
for D(w,=0)

D(w,=0)= [ " dr [ 68 #'(r) (0)

x exp[- [* a7 F(7)], (43)
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where F(7’) is the Ginzburg-Landau functional
where the only nonlinear term present is the lowest-
order one. Thus

F<a)=N(o>{§'(f>[1n_T1c‘+8LTc (1)

D \ a()

2]@(1’)} , (44)

where I'; is such that
Ty="7£(3)/87°T,2 . (45)

However, it seems difficult to perform the function-
al integral (43) without the help of some approxima-
tion. For example, the calculation can be carried
out within Schrieffer’s “static” or “RPA” approxima-
tions.?? Unfortunately, we have recently realized
(see the second article of Ref. 8) that such approxi-
mations were equivalent to selecting a certain class
of diagrams and that, consequently, they were

no longer valid when the mean field theory was
breaking down too. So that finally, the problem of
the renormalization of the fluctuation propagator
seems to remain quite open.

V. CONCLUSION

We have studied the effect of time-dependent
fluctuations of the order parameter in small super-
conducting samples on thermodynamic properties
and dynamical response functions. These fluctua-
tions have been analyzed within the mean field ap-
proximation and have been shown to give rise to
rather large effects. In order to substantiate this
point, let us estimate explicitly some quantities for
aluminum spherical grains of radius R.

A. Width of Critical Region

The width of the critical region is yielded by
relation (42). For R=100 A, AT,~10"'°K, and
for R=500 A, AT,~ 10"2°K. We emphasize again
that such widths are extremely large for a super-
conducting sample. For a very dirty two-dimen-
sional sample, we recall that AT,~10"°K. And
AT, is still smaller for a very dirty three-dimen-
sional sample. Thus, the zero-dimensional sam-
ples seem to be the only superconducting samples
in which the critical behavior could be conveniently
investigated. Moreover, we have outlined the
analogy between the fluctuation effects in such
samples and the problem of localized paramagnons.
Thus experiments on zero-dimensional supercon-
ducing samples could be fruitfully compared to ex-
periments in dilute nearly magnetic alloys.

B. Nuclear-Spin Relaxation Time

If o> o,(H), we have
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10 -1
Ty/Tp> (1+Ez-77) ,

where R is expressed in A. Thus if n=~0. 1,
R~100 A,
T,/T,=0.5.
C. Specific Heat

If the sample contains N identical spheres of vol-
ume Q such that NQ~107, the specific heat C, per
unit volume of the sample is (R being expressed
in A)

C,- 3x10° ere°K

SR STEK om’

which can be compared to the value of the electronic
specific heat C’ of aluminium at 7~1 °K (neglecting
all superconducting effects):

AND BEAL-MONOD 3

C'~5x10° erg °Kem?
D. Susceptibility x(H=0)

Assuming always NQ=~10"!, we can write for the
susceptibility

X=2x102(e*/c?) [£3(T)/R] T, ,

which can be compared to the similar expression
by Schmidt?® in the corresponding bulk material,
Xz, assuming that the bulk material has the same
mean free path as the grains. Thus we find

X/Xs =0.5 % [£(T)/R] .

Therefore, we think that the corresponding experi-
ments could be most interesting if the problem of
preparing samples containing such small grains
could be solved.
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